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ON THE THEORY OF THE LAVAL
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In the present paper, the motion of a---

ITozzlw

gas in a plane-parallel
Laval nozzle in the neighborhood of the transition from subsonic to
supersonic velocities is studied. This problem was first consid-
ered by Meyer (reference 1) who sought to obtain the velocity poten-
ttal in the form of a power series in the coordinates x,y of the
flow plane. The case of the nozzle with plane surface of transi-
tion frm subsonic to supersonic velocities was further consitired
in a paper by S. A. Christknovfch and his coworkers (reference 2).
For computing the supersonic part adjoining the transition line,
Christlanovich expanded the angle of inclination of the velocity
and a specific function of the modulus of the velocity in the puwer
series, using the velocity potential and the stream function as the
unknown variables. In a recently published paper, F. I. Frenkl
(reference 3), applying the holograph method of Chaplygti, under-
took a detailed investigation of the character of the flow near the
line of transition from subsonic to supersonic velocities. From
the results of !l?ricomlssinvestigation on the theory of differ-
ential equations of the mixed elliptic-hyperbolic t~e, Frankl
introduced as one of the independent variables in place of the
modulus of the velocity, a certain specially chosen function of
this modulus. He thereby succeeded in explaining the character of
the flow at the point of intersection of the transition line and
the axis of symnetry (center of the nozzle) and in studying the
behavior of the stream function in the neighborhood of this point
by separating out the principal term having, together with its
derivatives, the maximum value as compared with the corresponding
corrections. This principal term is represented in Frankl~s paper
in the form of a linear conibinationof two hypergeometric func-
tions. In order to find this linear combination, it is necessary
to solve a number of bounda~ problems, which results in a complex
analysis.

In the investigation of the flow with which this paper is
concerned, a second method is applied. This method is based on
the transformation of the equations of motion to a form that may
be called canonical for the system of differential equations of

*“K Teorii Sopla Lavala.t’ Prikladnaya Matematika i Mekhanika.
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the mixed elliptic-hyperbolictype to which the system of equations
of ,the nmtion of an Meal compressible fluid refers. By studying
the behavior of the integrals of this system in the neighborhood of
the parabolic line, the principal term of the soluticm is easily
separated out in the form of a polynomial of the third degree. As
a result, the computation of the transitimal part of the nozzle is
considerably simplified.

1. Fur&mental equations. - The equations of the two-dimensional,
steady, nonvortfcal motion of an ideal gas in the absence of friction
and heat conductivity have the form

(1.1)

(1.2}

where u and v are the coqmnents of the velocity along t
and y axes, p is the density, p is the pressure, W = -
Is the magnitude of the velocity, x = CJCV$
the density and pressure of the gas at rest.

Equations (1.1) represent the condition of
tices and the equation of continuity. Equation
equation for adiabatic motion for which

0

L=.XLk
PO PO

For the velocity of sound a

P. &d P. are

the absence of vor-
(1.2) is Bernoulli’s

(1.3)

(1.4)

From equaticms (1.2), (1.3), and (1.4), the following equaticm
is derived:

“=+-%?

.

/--”

(1.5)
.
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(a02 = xPo/Po is the velocity of sound in the gas at rest) from

which

d

0

P() Po w
l=——

m7pa2
(1s6)

From equation (1.1), it follows that there exist two functions:
the velocity potential cp(x,y) end the stream function $(x,y),
which are determined by the equations

dcp=udx+vdy ~=.Q_(. v&+ u*) (1.7)

In place of the velocity components u and v, the polar
coordinates, setting u = W cos e and v = W sin e, where 19 is
the angle between the velocity vector and the x axis,are sub-
stituted. Equations (1.7) are solved for dx and @, thus
obtaining

(1.8)

If x end y as well as W and 0 are considered as func-
tions
total

~

w

of the variables qt and $, then dx and dy must be
differentials, so that the following equations must hold:

(+)=-$-(,+) *(-)=*(!+)

In carrying out the differentiation,in taking account of the
fact that according to equation (1.5) in which Po/P depends

only on the magnitude of the velocity W, and in making use of
equation (1.6), the following equtions are obtained:



By solving these eqyations for the derivatives &?~p and
&3/a$,

(1.9)

This system of differential equations will be of the elliptical
type if the magnitude of the velocity W is less than the velocity
of sound and will be of the hyperbolical type for supersonic velocities.

The new function q is considered instead of velocity W and
is related to W in the following manner (reference 3):

Equations (1.9) then assume the form

@_lg$=o$+ b(T) %w=o

where

as a result of (1.10),is a function of the variable ~.

(1.10)

(1.11)

(1.12)

Equaticms (1.11] are the fundamental equations for the inves-
tigation of two-dimensional,nonvertical motion of a gaEIwhen the
velocity of the flow passes from subsonic to supersonic velocity.
~ some cases,it is more convenient in these equations to sub-
stitute ~ and q as the independent variables and take cp and
$ as the required functions. After this transformation, equa-
tions (1.11) assume the form

.

2. Investiwtion of variable T - The variable ~ deter-
mined by eqyation (1.10) fs considered in more detafl. For
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computing the integral entering this equation, the square of the
velocity of sound iS

In substituting the preceding equation in (1.10)

The integration results In

[[( )

Zh

r
1- ~

~2-~2
~=fln

T

1+ x
h2-A2

By expanding equation (2.3) in a

From equation (2.3), it follows,

(2.1)

series

2/3

(2.3)

that q>O for A

(2.4)

<land
~cO for-h>l, ‘that-is, in the plane of the variables 19 and
~, the region lying in the upper half-plane will correspond to the
region of subsonic velocities and the region lying in the lower
half-plane will correspond to the supersonic velocities. The line
of transition from subsonic to supersonic velocity will correspond
to the line v = O, that 1s, the axis of abscissas. From equa-
tion (1.10), the value of the velocity W = O in the plane e,~
corresponds to an Infinitely distant point. For A > 1, equa-
tion (2.3) assumes the form

v

The
velocity
known as
ence 4).

characteristics in the plane of the hodograph of the
for two-dimensional, nonvertical motion of the gas are
epicycloid (fig. 1), the equations of which are (refer-

.
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Because for a point transformation characteristics go over
into characteristics, the following equatims of the character-
istics in the plane of the variables @ and q are foundby using
eqyation (2.5):

()
3/2

e=+: -~ +C (2.6)

from which it follows that the characteristics assume the form of
semicubical parabolas with the cusps on the axis of abscissas
(fig. 2).

3. Differential equations of motion of a ~s in neighborhood
of transition line. - The flow in a Laval nozzle near the U.ne of
transition from the subsonic to the supersonic velocities is con-
sidered. This llne is hereinafter designated the sound line.

If a straight line perpendicular to the axis of symmetry of
the nozzle is directed away from the axis, it will intersect the
streaml.lneswith constantly increasing curvatures and will there-
fore encounter particles of the gas having constantly increasing
velocity. The sound line will therefore be a curve that is con-
vex toward the supersonic velocities with vertex on the azls of
symmetry (fig. 3). The point of intersection of the sound line
with the axis of symetry 1s, according to Frankl, denoted as the
center of the nozzle.

In the plane of the varfables p and $, the region of flow
is transformed into a strip the width of which is determinedly
the amount of gas flowing through the nozzle (fig. 4).

The point of origin of coordinates in the cp)$ plane cor-
respmxls to the center of the nozzle in the flow plane.

The determination of the flow reduces to finding two functhns
~~(cP~W) -d e~(~~) t~t satisfYeq@io~ (1”1~). ~cause
the flow is to be symmetrical with respect to the streamline
$=0, it is necessary that the required functions satisfy the
Conditions

%/hen the streamlhes have points of zero curvature, the sound
line will be a straight line perpendicular to the axis of synmet~;
this case was consideredby S. A. Christianovich (reference 2).



which are based on equations (2.2).

The solution of equation (1.11), in
in the variables p and $, takes into

9 v

(3.1)

the form of a power series
account equations (3.1)

n

e = blw + b2Q%J + b3$3+ b4cP%+ .

from which it follows that if the flow in the
origin of coordinates is considered, that 1s,
assumed to be small magnitudes, the following
obtained from equation (3.2):

.

. . (3.2)

neighborhood of the
if g and Q are
equations may be

V = o(q) e = Ob$) ~ = o(w)

~ = o(q)) (3.3)

With the use of equation (2.1) and the notations introduced in
equations (2.2), equation (1.12) for the function b(~) may be
reduced to the form

b(q)

In accordance with equation (2.4), the following equation is derived:

In taking account of the order of smallness of all terms
entering equations (1.11), it is concluded that near the origin
of coordinates the system of equations (1.11) may be replaced by
the following equations:

#
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~+b(o)~=o ~a$v.lg=o

By setting b(0)$ =T, the final result is

+ae=o
%- 7 ~q -%=0

(3.4)
v

where, for simplicity, the bar over $ has been dropped.

4. Investigation of flow in neighborhood of center of nozzle. -
It is evident that the functtons

(4.1)

where A is an arbitrary constant, are integrals of the system of
equations (3.4), and satisfy conditions (3.1).

The significance of the constant A will be explahed. From
the second equation (4.1), q = Acp along the axis of symmetry of
the nozzle ($ = O). Differentiation results In

~=q=qdWdx ——

Furthermore, by using successivelyequations (1.10) and (2.1)

~=.$J;:;J-

Moreover, along the line $ = O

Hence,for A the following relation is obtained:

.

‘d

.

y=o y=o
.

●
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where to obtain the last result, equation (2.4) was used.

9

The value of A is thus proportional to the value of the
derivative of the velocity at the center of the nozzle.

It is assumed tht 3uPx> O so that A will be a negative
quantity.

Along the sound line, q =0. Hence, according to the second
equation (4.1), the following equation of the sound Une is
derived: ‘

(4.3)

that is, in the plane cp,~, the sound Mne will be a parabola.

From equation (3.4),
acteristics has the form

the differential equation of the char-

By substituting the value of q from equation (4.1)

In the integration of this equation, set

The equation then

(
1-2+2:

assumes the form

)3=2A&2= or l-29-2xy$g =*y

After separating the variables and Integrating, the following
equations of the characteristics are obtained:

2/3 1/3213 (27-1)1/3 = cX(y+l) X(y-1) (2y+l) = c
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In order to obtain the characteristicspassing through the
onl.gfnof coordinates, set C = O. Thus the variables g and ~
become

(4.4)

Henc~the characteristicspassing through the origin of coor-
dinates in the cp,$ plane are parabolas tangent to each other at
this point and tangent to the sound line (fig. 4). The originof
coordinates will therefore be a singular point of the titegrals of
equations (3.4) determining the flow in the nozzle.

In considering the character of this singularity, it is evi-
dent from figure 4 that the characteristicsand the sound line
dfvide the neighborhood of the center of the nozzle into six
regions. It shall be investigated how the neighborhood of the
center of the nozzle is transformed in the plane of the variables ~
and T by the integrals of eqyation (4.1). By eliminating from
equation (4.1) the variable cp, the following cubical parabola is
used in determining the stream function:

Aw+3Aq$-38=0 (4.5)

This eqpation has one real root if its discriminant

5 . 962/4 + V3> O and three real roots if 5< 0. Because the
point (cp= 0, ~ = O) corresponds in equation (4.1) to the
pOint (e =0, ~ SO), the equations of the characteristics cor-
responding to equations (4.1) are in accordance with equation (2.6).

92
~e +Tp.o

Thus regions 1, 11, and 111 of the plane are transformed into the
su region of the plane 13,q ~~betwe~ the chkracteristtcs

Furthermore, the streamlines ~ . *q

from equation (4.5), to the straight lfnes
correspond, as seen

in the e,q plane.

&

*
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The transformation of the neighborhood of the nozzle in the
8.n Diane will thus have the form of the folded surface shown in
f&&-5. The corresponding regions in figures
by the same numbers.

In order to compute the streamlines in the
tions (1.8) are used in which d$ iE set equal
they assume the form

dx =&d(p
si12 eo=–~

4 and 5 are denoted

flow pkne,equa-
to 0, after which

dq)

By substituting for 6 its value from equations (4.1), the
magnitude of the velocity W is, according to equation (1.10), a
function of the variable q. Thus along the streamlines ~ = *q

Integration results in

Q

x= J’ ( )dd- @q@@
&cOs 3

where H is the width of the nozzle at the critical section.

(4.6)

In equations (4.6), set according to equations (4.1)

v =AP-
A2
y q2

The computation of the integrals in equation (4.6) reduces,
evidently, to the computation of the two titegrals of the type
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with the aid of which x and y are expressed as follows:

33 33
x= 11cos~+12ein~ Y=

(

~3 3

)

~3 3
& 12si.n-$-11cos -#-

(4.7)

5. Nozzle with surface of weak discontfiuity. - ~ case in
which weak discontinuities are formed along the Mach lines issuing
from the center of the nozzle is here considered. For this fives-
tfgation, it is necessary and sufficient that the derivative
(~ufix)y~ possess a discontinuity at the center of the nozzle

(reference 3). It is assumed that both values px)y+]x+ ~d

~~h.)y-j]x=-o -e positive.

From equation (4.1), it is evident that the ~gnitude A will
have the value A = Al tithe regions VI, V, and IV (fig. 4) and

the value A = ~ in the region 111 where, according to equa-

tion (4.2), Al< O and A2<0.

From equations (4.1), it is concluded that in the regions VI,
V, andIV

e = A12qmJJ

and for region III

e = A22@J

(5.1)

(5.2)

According to equationa (4.4), the equations of the character-
istics separating the regions IV and V tiom regions I and II and
the equations of the characteristics separating regions I and II
from region 111 have the forms

Substituting
and the second in

A1$2 A#
P=~ T=-T (5.3)

the first of these equations in equations (5.1)
eqqations (5.2)

.

4’

d’
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.

A1%3
e—=-

12

e =+2 %3 n=- A2@

Al~2
9 =t—

4
(5.4)

A2$2
o=-— 2 (5.5)

In order that the flow in the nozzle has no disconti.nuities,
it is necessary to determine 13 and T in regions I and II from
equations (3.4) in such a manner that the characteristics condi-
tions, equations (5.4) and (5.5), are satisfied. In order to
integrate the system, equations (3.4), set

where f and g are functions to be determined.

(5.6)

For this substitution, equations (3.4) are transformed into
a system of ordinary differential equations with the independent
variable t = PAZ

2f-2tf’-g’ = o ff’t3g-2tg’ = o (5.7)

By the elimination of G’

% =* [4tf - (f *4t2) f’] (5.8)

By differentiating equation (5.8) and substituting the result in
the first equation (5.7), a differential equation of the second
order for determining f is obtained

(4t2 *f) f“ +f’z - 2tf’ +2f =0 (5.9)

From equations (5.6), (5.4), and (5.5), it follows that the
boundary conditions for the function f will be

A~2
f___ Al

for t=~
4

A2
f=- A2 fort=-~ (5.10)

In order to integrate equation (5.9), it is written in the form

r
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()f’+2t’=o2tf‘-f

(The solutions 2tf’ - f = O, that 1s, f = cK which b ~t
‘satisfyequations (5.10) are-eliminated.) In
quadrature

f’+2t 1—=.
2tf‘-f 2c~ 0’ “-&f

carrying out the

that is, the integration of the linear equation results tn

f = 4clt - 0c12 + C2 J%% (5.11)

The boundary conditions,equations (5.10), which the obtained
solution equation (5.11) must satisfy, have the form: f = fl for

t=tl and. f= fz for t = t2 where it is easily seen from

eqpation (5.10) that the points (tl, fl) and (t2, f2) lie on the

parabola f = -4t2 and that tl< O and t2> O. Hence, in order

to satisfy the boundary conditions, it is necessary from the family
of parabolas equation (5.11) to choose the parabola passing through
(tl, fl) and (t2, f2). Upon satisfying these conditions

tf*tlt2+t22 16(t1-t2)2 (t1+2t2)2 (2tl +t2)2
cl=-

3(t~+ tz) C22 =
27(t1+t2)3

It is necessary that along a streamline the velocity in the
flow direction should increase monotonically, t t is,that ~
should decrease monotonically. Because T = $ according to
equation (5.6], f’< O must be in the range tl <t <t2. In

order to obtain this result, it is necessary that C2 <O. This
condition is possible only for 2t~ + t2 C O and t~+2t2>0

when in accordance
is obtained

with eq~tions (5.10), the following condition

for which a flow without discontinuity is possible.

Tmnslatedby S. Reiss
Natio~l Advisory Conunittee
for Aeronautics.
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